Microbial degradation of chloroaromatics: use of the meta-cleavage pathway for mineralization of chlorobenzene.

نویسندگان

  • A E Mars
  • T Kasberg
  • S R Kaschabek
  • M H van Agteren
  • D B Janssen
  • W Reineke
چکیده

Pseudomonas putida GJ31 is able to simultaneously grow on toluene and chlorobenzene. When cultures of this strain were inhibited with 3-fluorocatechol while growing on toluene or chlorobenzene, 3-methylcatechol or 3-chlorocatechol, respectively, accumulated in the medium. To establish the catabolic routes for these catechols, activities of enzymes of the (modified) ortho- and meta-cleavage pathways were measured in crude extracts of cells of P. putida GJ31 grown on various aromatic substrates, including chlorobenzene. The enzymes of the modified ortho-cleavage pathway were never present, while the enzymes of the meta-cleavage pathway were detected in all cultures. This indicated that chloroaromatics and methylaromatics are both converted via the meta-cleavage pathway. Meta cleavage of 3-chlorocatechol usually leads to the formation of a reactive acylchloride, which inactivates the catechol 2,3-dioxygenase and blocks further degradation of catechols. However, partially purified catechol 2,3-dioxygenase of P. putida GJ31 converted 3-chlorocatechol to 2-hydroxy-cis,cis-muconic acid. Apparently, P. putida GJ31 has a meta-cleavage enzyme which is resistant to inactivation by the acylchloride, providing this strain with the exceptional ability to degrade both toluene and chlorobenzene via the meta-cleavage pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Degradation of chloroaromatics by Pseudomonas putida GJ31: assembled route for chlorobenzene degradation encoded by clusters on plasmid pKW1 and the chromosome.

Pseudomonas putida GJ31 has been reported to grow on chlorobenzene using a meta-cleavage pathway with chlorocatechol 2,3-dioxygenase (CbzE) as a key enzyme. The CbzE-encoding gene was found to be localized on the 180 kb plasmid pKW1 in a cbzTEXGS cluster, which is flanked by transposases and encodes only a partial (chloro)catechol meta-cleavage pathway comprising ferredoxin reductase, chlorocat...

متن کامل

Aerobic Degradation of Chloroaromatics

Microorganisms are key players in the global carbon cycle. In addition, it appears that most xenobiotic industrial chemicals can be degraded by microorganisms, either by a combination of cometabolic steps or by serving as growth substrate, leading to the mineralization of at least part of the molecule. Here, we present the principles of the microbial aerobic degradation of chloroaromatic compou...

متن کامل

Genetic and biochemical analyses of the tec operon suggest a route for evolution of chlorobenzene degradation genes.

The TecA broad-spectrum chlorobenzene dioxygenase of Burkholderia sp. strain PS12 catalyzes the first step in the mineralization of 1,2,4, 5-tetrachlorobenzene. The catabolic genes were localized on a small plasmid that belongs to the IncPbeta incompatibility group. PCR analysis of the genetic environment of the tec genes indicated high similarity to the transposon-organized catabolic tcb chlor...

متن کامل

Metabolic reconstruction of aromatic compounds degradation from the genome of the amazing pollutant-degrading bacterium Cupriavidus necator JMP134.

Cupriavidus necator JMP134 is a model for chloroaromatics biodegradation, capable of mineralizing 2,4-D, halobenzoates, chlorophenols and nitrophenols, among other aromatic compounds. We performed the metabolic reconstruction of aromatics degradation, linking the catabolic abilities predicted in silico from the complete genome sequence with the range of compounds that support growth of this bac...

متن کامل

Degradation of 4-Chlorophenol via the meta Cleavage Pathway by Comamonas testosteroni JH5.

Comamonas testosteroni JH5 used 4-chlorophenol (4-CP) as its sole source of energy and carbon up to a concentration of 1.8 mM, accompanied by the stoichiometric release of chloride. The degradation of 4-CP mixed with the isomeric 2-CP by resting cells led to the accumulation of 3-chlorocatechol (3-CC), which inactivated the catechol 2,3-dioxygenase. As a result, further 4-CP breakdown was inhib...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 179 14  شماره 

صفحات  -

تاریخ انتشار 1997